Felix A. Palm

I am a theo­re­ti­cal phy­si­cist at Lud­wig-Maxi­mi­li­ans Uni­ver­si­ty Munich in the group of Fabi­an Grusdt. My rese­arch focu­ses on stron­gly cor­re­la­ted quan­tum many-body sys­tems, with an empha­sis on frac­tion­al quan­tum Hall phy­sics in lat­ti­ces. In my work, I am com­bi­ning ana­ly­ti­cal approa­ches (in par­ti­cu­lar varia­tio­nal sta­tes) and nume­ri­cal methods (espe­ci­al­ly ten­sor net­work tech­ni­ques like DMRG simu­la­ti­ons) to under­stand exo­tic sta­tes of mat­ter. More broad­ly, I am inte­res­ted in inter­ac­ting topo­lo­gi­cal pha­ses of mat­ter and the oppor­tu­ni­ties to under­stand them using quan­tum simulators.

Feel free to get in touch at f.palm[at]physik.uni-muenchen.de – I’m always hap­py to discuss!

You can also find me on Goo­g­le­Scho­lar and X/Twitter for the latest updates


09/2023 // How do you detect and cha­rac­te­ri­ze topo­lo­gi­cal order in your quan­tum simu­la­tor using a smart basis choice? Check out our new paper on the arXiv to find some hid­den order!

07/2023 // How can a sin­gle cen­ter site sta­bi­li­ze Bose-Ein­stein con­den­sa­ti­on on a ring? Our paper on an emer­gent \(\mathbb{Z}_2\)-symmetry on a wheel was just published in Com­mu­ni­ca­ti­ons Phy­sics. This is my first publi­ca­ti­on in the Natu­re portfolio! 🥳

06/2023 // I suc­cessful­ly defen­ded my PhD thesis! 👨‍🎓

05/2023 // I sub­mit­ted my PhD the­sis 🥳🥳 – Still have to defend it in June, but this real­ly feels like a major milestone!

02/2023 // Our paper on fer­ro­ma­gne­tism and skyr­mi­ons in the Hof­stad­ter-Fer­mi-Hub­bard model has been published in the New Jour­nal of Phy­sics (NJP)!

08/2022 // What can Fock basis snapshots tell us about the cen­tral char­ge of a Laugh­lin edge sta­te? Check out our let­ter recent­ly published in Phys. Rev. B.

11/2021 // I’ll be visi­ting the group of Moham­mad Hafezi at the Uni­ver­si­ty of Mary­land for a 5‑month rese­arch stay this winter.

04/2021 // Check out my first paper published in Phys. Rev. B! We stu­di­ed the pos­si­bi­li­ty to rea­li­ze the boso­nic Pfaf­fi­an sta­te on a Hof­stad­ter-Hub­bard cylinder.